

David KRYZA

ISPB, Université Claude Bernard Lyon 1 ILM, UMR 5306 Radiopharmacie, GCS LUMEN (HCL-CLB)

Introduction

Copie Interdite

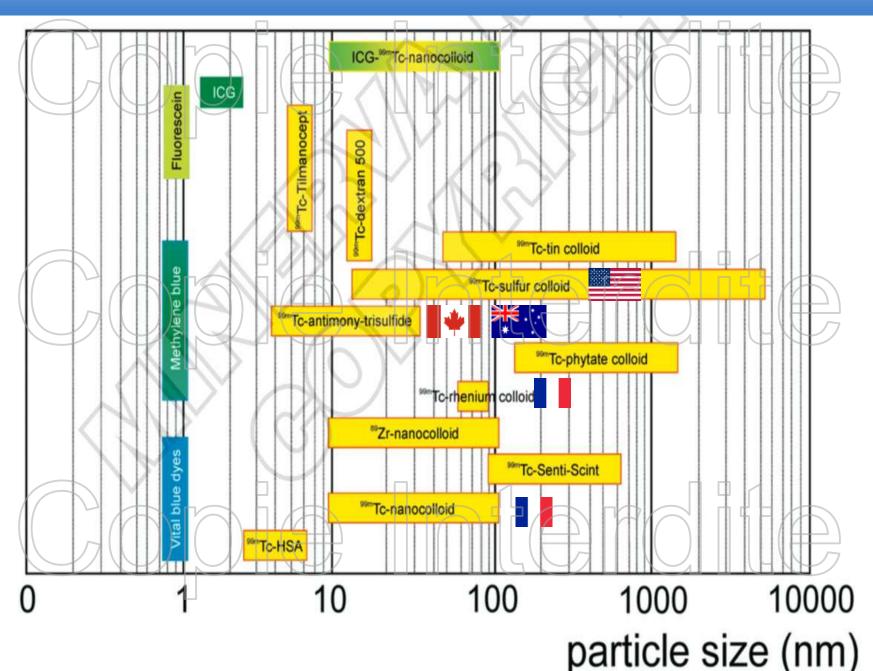
- Le GS se définie comme le **premier relai ganglionnaire** situé dans le bassin de drainage lymphatique d'une tumeur
- Son absence d'envahissement par des cellules métastatiques serait un signe fiable de l'absence d'envahissement de tout autre ganglion
- Chez la majorité des patients devant subir un curage ganglionnaire, le geste chirurgical se trouve ainsi réduit au prélèvement d'un unique ganglion

Recommandations actuelles

- ✓ Lymphoscintigraphie 30min à 24h avant l'acte chirurgical
- Injection la veille ou le matin même de l'intervention en 2 ou 4 points de radiocolloïdes dans un volume très faible
- Image planaire
- Image SPECT-CT : si non visualisation en planaire, patient obèse, GS extra-axillaire, difficulté d'interprétation image planaire

- Injection de 2 mL de bleu patenté, 10 à 20 min avant la chirurgie (après anesthésie du patient) attention aux contre-indications!
- Détection du ou des GS à l'aide d'une sonde de détection

Taux de détection variable dans la littérature : 90 à 99%


Les traceurs de la chirurgie radioguidée

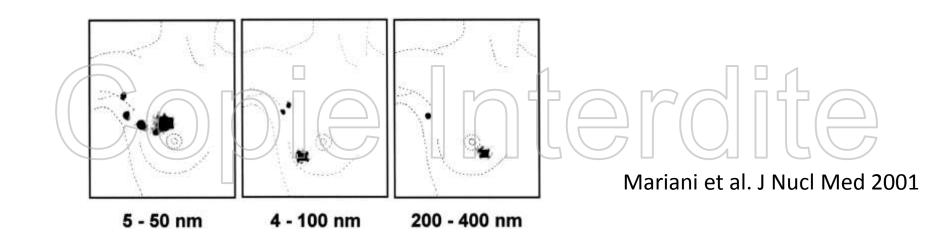
Différents RP décrits dans la littérature

- ^{99m}Tc-nanocolloïdes d'albumine humaine (Nanocoll®)
- ^{99m}Tc-sulfure de rhénium colloïdale (Nanocis®)
- ^{99m}Tc-Phytate
- 99mTc-serum albumine
- ¹⁹⁸Au-colloïd
- 99mTc-antimony trisulfide colloid

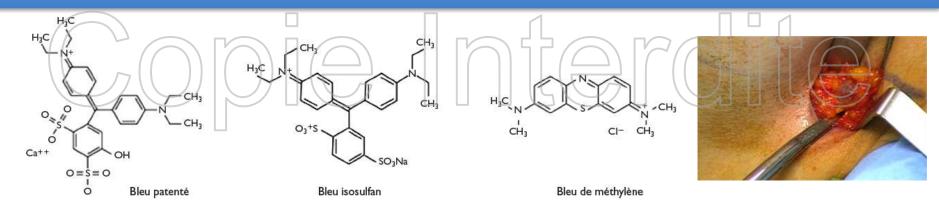
En France, le Nanocoll® et le Nanocis® disposent d'une AMM pour la lymphoscintigraphie

Les traceurs du GS

Facteurs influençant la qualité de l'examen


La visualisation du GS est influencée par différents facteurs

- √ voie d'injection (injection superficielle +++)
- ✓ Patients (poids, âge)
- ✓ Techniques
- La taille des particules +++
- La quantité des colloïdes,
- le volume (attention au volume mort des seringues!)
- 1 ou 2 jours : pas de différence si l'activité injectée est > 50 MBq
- l'activité (La visualisation du ganglion sentinelle est meilleure qualitativement et quantitativement si la solution colloïde est concentrée)

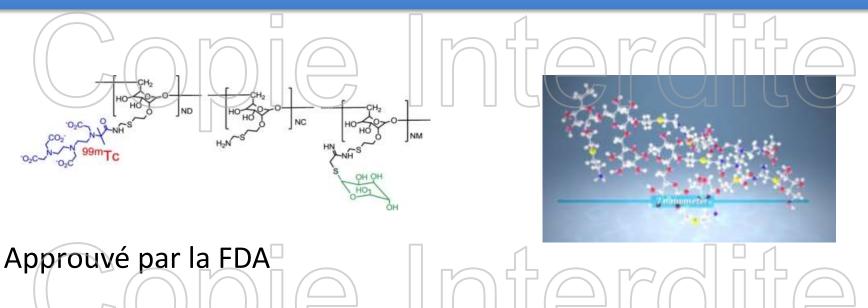

La taille des particules

Les colloïdes doivent avoir une taille inférieure à 80-100 nm et de distribution uniforme **gaussienne** (la largeur de distribution peut être considérable)

- < 10 nm les colloïdes diffusent directement dans l'espace vasculaire (cinétique plus rapide)
- > 500-1000 nm, ils restent au site d'injection (cinétique lente)

Les colorants « bleu »

- Diamètre < 1 nm
- Rush cutanée < 1%
- Coloration bleutée des urines pendant 12 à 24h
- Coloration bleutée des téguments pendant 24 à 48h
- Choc anaphylactique de 0,4 à 1%
- Bleu de méthylène potentiel allergisant moins important, mais réactions cutanées locales possibles : nécroses, capté de manière active¹ par les cellules cancéreuses, en ciblant le potentiel membranaire mitochondrial

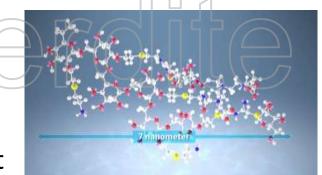

¹Eckert et al. 2013

Pourquoi des nouveaux traceurs pour le GS

- Taux d'échec variable dans la littérature : entre 0 et 10%
- Diminution du taux de détection si absence d'utilisation du bleu
- Favoriser la clearance du site injection et la rétention dans le GS
- Visualiser avec certitude le GS et surtout plus rapidement pour ne pas faire attendre le chirurgien !!!

- Objectif : 100% de détection et 0% de faux négatifs

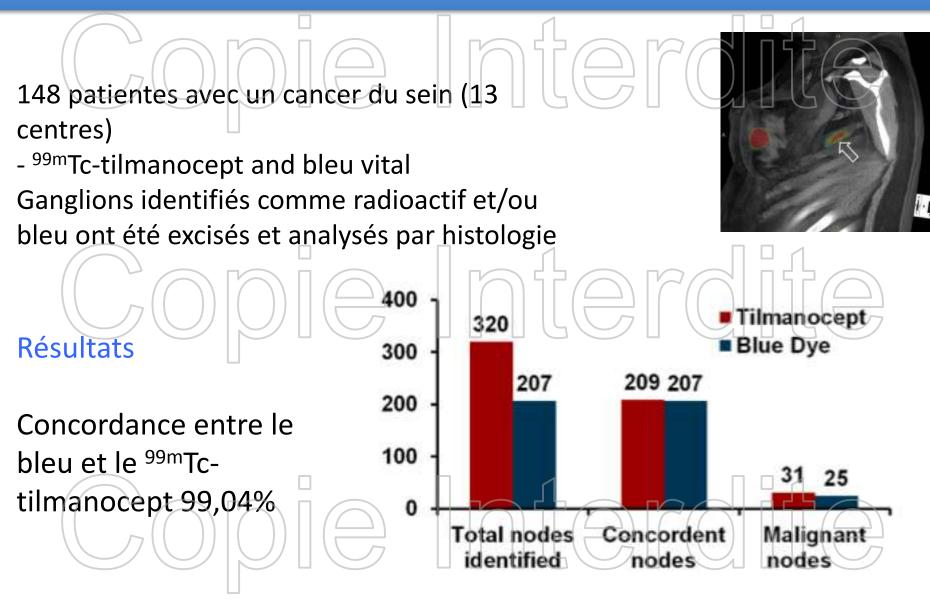
Lymphoseek 99mTc-DTPA-mannosyl-dextran



- Haute affinité pour le récepteur
 CD -206
- Concentration importante en surface des macrophages et des cellules dendritiques
- Internalisé dans le tissu lymphatique

Lymphoseek 99mTc-DTPA-mannosyl-dextran

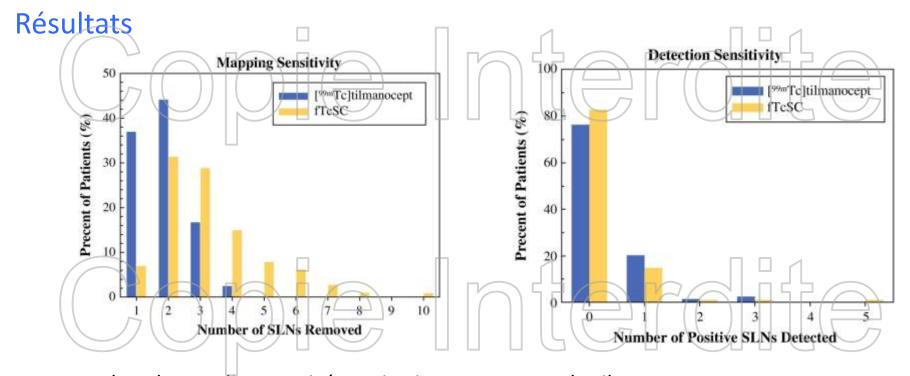
- Taille de 7 nm et Poids 19,000 Da
- Captation rapide et rétention importante
- Détection rapide : à partir de la 10^{ème} minute et jusqu'à 15h post injection



 Clairance rapide au site d'injection (identification +++ si proximité du site d'injection)

Traceur	taille	Captation GS		
^{99m} Tc-sulfur colloid ^a	100-1000	<1% @ 3h		
^{99m} Tc-colloïde d'albumine ^b	<80	≈1% @ 3h		
^{99m} Tc-antimony sulfide ^a	3-30	≈1% @ 3h		
^{99m} Tc-tilmanocept ^c	7	5-7% @ 1h		

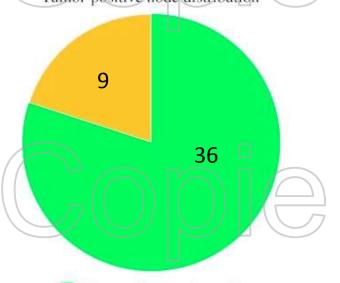
a. Kaplan et al.; b. Fowler et al.; c. Leong et al.


Etude de phase III 99mTc-Timanocept (sein)

Comparaison 99mTc-sulfur colloid (filtré) vs 99mTc-Tilmanocept

199 patientes avec un cancer du sein (13 centres)

- ^{99m}Tc-tilmanocept + bleu vital 84 patients
- 99mTc-sulfur colloid + bleu vital 115 patients


- Nombre de ganglions excisés moins important pour le tilmanocept
- Sensibilité similaire pour la détection des GS +

Baker el al. 2015

Etude de phase III 99mTc-Timanocept (mélanome)

- √ 154 patients atteints de mélanome (15 centres)
- 99mTc-Tilmanocept et bleu vital
- ✓ 232/235 des ganglions bleus ont été détectés avec le ^{99m}Tc-Tilmanocept, concordance : 98,7%, (p<0,001)
- ✓ ^{99m}Tc-Tilmanocept a permis la détection d'au moins un nodule supplémentaire chez les patients (n=150) par rapport au bleu vital (n=138)

Phase III Melanoma
Tumor-positive node distribution

Ganglions positifs: 45 (par technique histologique ou IHC)
Aucun GS pathologique était bleu et non radioactif

Essai de phase II utilisant le Bleu de méthylène-lode 125 pour l'identification des

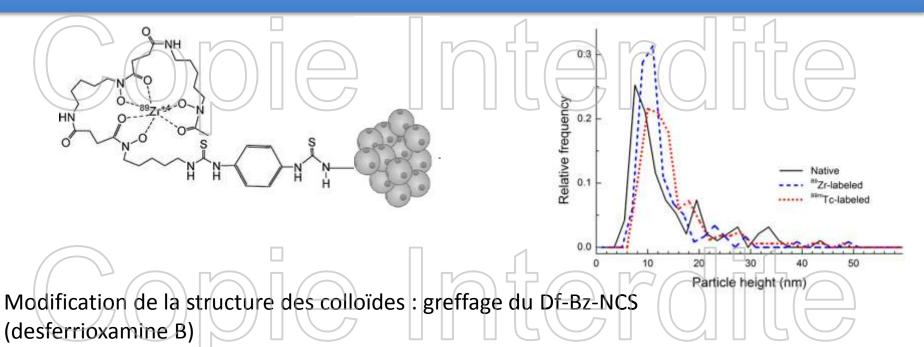
GS dans le cancer du sein

Iode 125 : période de 59,4 j, gamma de 35,5 keV Préparation stable plusieurs jours 1 activité 37 MBq, préparation au lugol Sonde de détection calibrée pour l'iode 125

Activity depth, cm	^{99m} Tc (uGy/h at 1 foot)	125 (uGy/h at 1 foot)	125I/ ^{99m} Tc ratio, % 95.70	
2	2.11	2.02		
2	2.39	2.72	114	
4.2	1.69	0.66	39	
4.2	1.72	0.88	51	
6	1,41	0.26	18.40	
6	131	0.35	26.70	

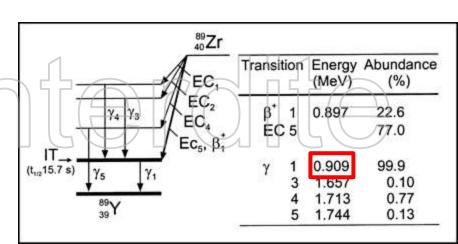
62/	pat	ien	ıte	S_
	-			

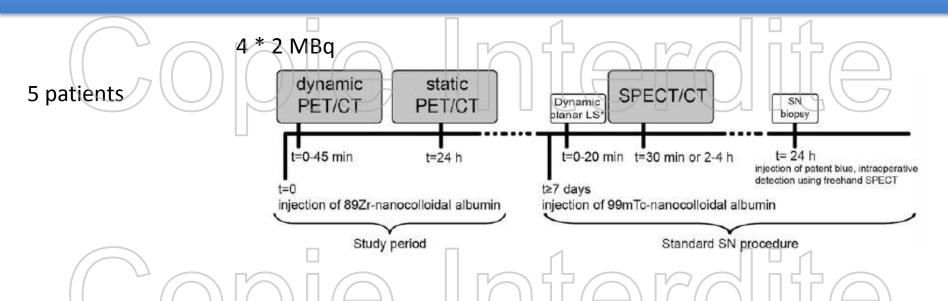
SLN status	Hot only	Blue only	Blue and hot				
Positive $(n = 21)$	6	0	15				
Negative $(n = 89)$	6	2	81				
Totals $(n = 110)^*$	12	2	96				


81 des nodules excisés étaient bénins 91% des nodules excisés étaient radioactif et bleu Taux d'identification : 94% (58/62)

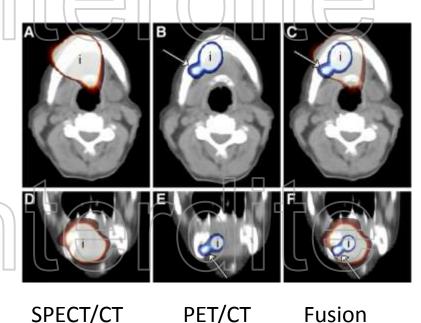
Diminution de l'exposition aux radiation pour le chirurgien

Harkrider et al. 2013

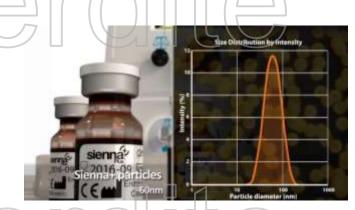

⁸⁹Zr-nanocolloides


- Radiomarquage avec le ⁸⁹Zr (période 78h, émetteur de positon, ⁸⁹Y(p,n)⁸⁹Z)
- Purification par chromatographie d'exclusion
- PRC >96,9 %; rendement de synthèse : 64%

Taille:


- 89Zr- nanocolloides d'albumine 12.7 ± 0.6 nm;
- 99mTc-nanocolloides d'albumine 14.9 ± 0.5 nm,

⁸⁹Zr-nanocolloides : identification de GS (carcinome cavité buccale)


- 22 foyers détectés dont 15 considérés comme SN en SPECT-CT
- 27 foyers en PET-CT (+5)
- Chez 2 patients, visualisation en PET/CT de foyers qui étaient cachés par le point d'injection en SPECT-CT et non détectable en intra-opératoire
- Problème de couts et de disponibilité du traceur et de la PET-CT?
- Détection en per-opératoire : sonde spécifique détection des γ (collimation importante) beta (collimation réduite)?

Heuveling et al. 2013

Sienna+® - SentiMag®

- Nanoparticules d'oxyde de fer superparamagnétiques (SPIO)
- Taille de 60 nm
- Solution stérile injectable brune (28 mg de Fe/mL)
- Recouverte de carboxydextran (meilleure dispersion, prévient l'agglomération)
- Marquage CE
- SentiMag[®] : magnétomètre manuel, champ magnétique créé par la sonde, diamètre de 6 mm
- Injection de 2 mL dans le tissu sous-cutané périaréolaire au bloc, suivi d'un massage de 5 mn

Sienna+®

SentiMag®

Sienna+® - SentiMag®

- 2 études multicentriques (160 et 150 patientes) vs technique standard (isotopique +/- bleu)
- Injection Nanocoll + lymphoscintigraphie puis injection de Sienna+ puis +/- bleu selon centre
- Détection à l'aide de Sentimag puis la sonde gamma

Taux d'identification

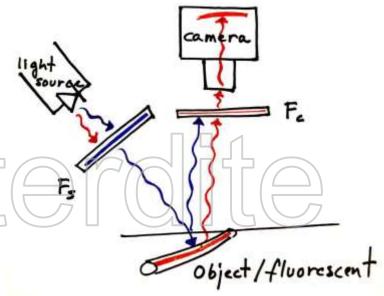
- Douek: 95% technique ref. (+/- bleu) et 94,4 % SentiMag
- Thill: 97,3 % technique ref. et 98% Sentimag
- Courbe d'apprentissage rapide (4 à 5)
- Performance équivalente
- Nécessité d'utiliser du matériel chirurgical en plastique pendant la détection pour éviter la perturbation du signal magnétique (forceps...)
- Coloration intra-mammaire persistante!

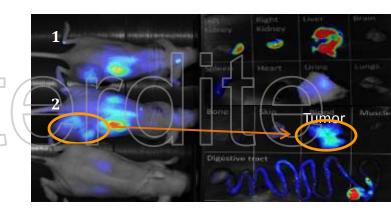
Imagerie de fluorescence par réflexion

Basée sur la détection de la lumière **émise** par un fluorophore en réponse à une **excitation** à une longueur

d'onde donnée

Diffusion, absorption, auto-fluorescence


Proche infrarouge (650 à 900 nm)



- Rapide
- peu couteuse
- Sensible (10⁻⁹ à 10⁻¹² M)
- Temps acquisition court

Inconvénients:

- Faible résolution spatiale
- Profondeur de détection limitée
- Non quantitative (absolue)

vert d'indocyanine: Infracyanine®

- Pic d'absorption 807 nm Pic d'émission 822 nm
- Seul approuvé par la FDA et l'EMA
- AMM : angiographie oculaire, étude du débit cardiaque et détermination des volumes sanguins hépatique
- Migration très rapide 1 -10 min (taille 1 nm)
- ½ vie plasmatique 150 à 180 s
- Auto-fluorescence limitée

- Différents systèmes d'imagerie
- Site injection et dose ≠

 Comparaison difficile

A Indo	cyanine Green	(ICG)
N-		N N
	M.W. 770 D.	
o=\$=0	M.W. 776 Da	0=s=0
o-		O- Na+

Cancer du seir

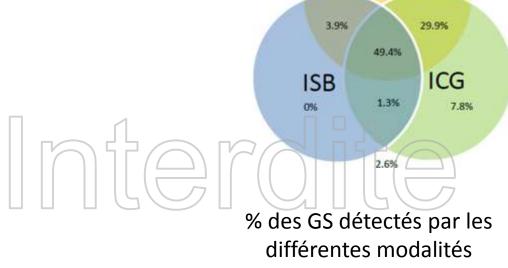
Study	Year	Number of patients	SLN identification rate (%)
Kitai et al. [18]	2005	18	94.0
Tagaya et al. [19]	2008	25	100
Murawa et al. [20]	2009	30	96.7
Troyan et al. [21]	2009	6	100
Hirche et al. [22]	2010	43	97.7
Hojo et al. [23]	2010	113	99.3
Micog et al. [24]	2011	24	100
Tagaya et al. [25]	2011	50	100
van der Vorst et al. [26]	2012	24	95.8
Schaafsma et al. [27]	2013	32	100
Guo et al. [28]	2014	86	93.0
Tong et al. [29]	2014	96	96.9

vert d'indocyanine : Infracyanine®

Imaging system	Excitation source	Working distance	Field of view	White light illumination of surgical field	NIR-colour overlay	
PDE	LED 805 nm, power NS	15-25 cm	NS	No \	No	
SPY	Laser 806 nm, 2.0 W	30 cm	56 cm ²	No	No	
Fluobeam	Laser 780 nm, 10mW/cm ²	22 cm	80 cm^2	Yes	No	
HyperEye	LED 760 nm, power NS	30–50 cm	78.5 cm^2	Yes	Yes	Fluobeam
FLARE	LED 745–779 nm, 14 mW/cm ²	45 cm	3.7 cm ² –169.5 cm ²	Yes	Yes	
Mini-FLARE	LED 760 nm, 8.6 mW/cm^2	30 cm	100 cm^2	Yes	Yes	
FDPM imager	Laser Diode 785 nm \pm 10 nm, <1.9 mW/cm ²	<76.2 cm	Max 900 cm ²	No	No	$\Pi = \Lambda$
Munich SurgOptix prototype camera system Imaging Articulat Head Arm	Laser 750 nm, 300 mW	21 cm	1,5 cm ² 107 cm ²	Yes	Yes	
Alli		P _C Ele	hnologist isplays ortable, ctrically- solated Cart	SLN #2 SLNs #3 & #4	Color Vid	NIR Fluorescence Color-NIR Merge

Troyan et al. 2009

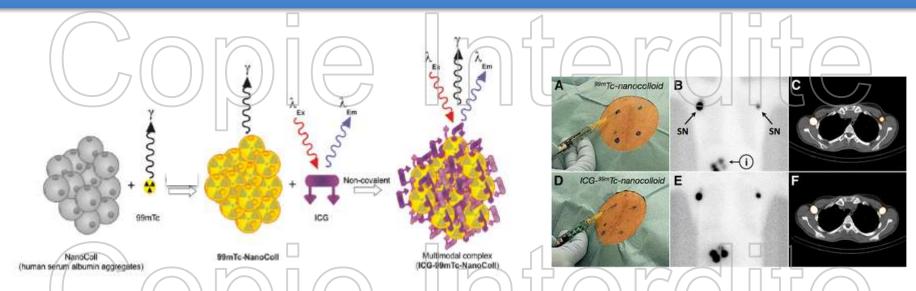
ICG dans le mélanome

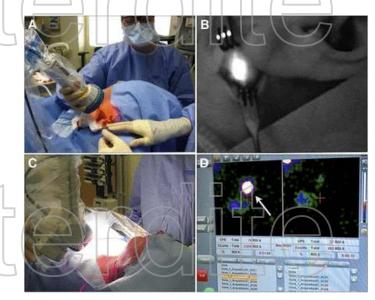

52 patients (mélanome cutané)

Nanocoll-^{99m}Tc + injection intradermale de bleu vital et ICG

Résultats :77 ganglions identifiés Taux de détections (% patients) :

- 96,2% pour le Nanocoll-^{99m}Tc
- 59,6% pour le bleu vital


- 88,5% pour l'iCG



TSC

99mTc-Nanocoll-ICG

- Diamètre moyen 20 nm
- Interaction entre le fluorophore et les acides gras de l'albumine
- Même voie de drainage que le Nanocoll
- 1 seul injection (50 X moins ICG)
- Dans le futur imagerie hybride optique/SPECT ?
- Pas de différence protocole 1j /2j

^{99m}Tc-Nanocoll-ICG et mélanome

104 patients (mélanome cutané)

- 99mTc -Nanocoll-ICG (ratio 1-18)+
- SPECT-CT
- injection de bleu vital et détection à l'aide d'une sonde

Résultats: 2,4 ganglions identifiés en moyenne par patients

Taux de détections (% patients) :

- 93,8% des GS radioactif
- 96,7% des GS fluo
- 61,8% des GS bleu

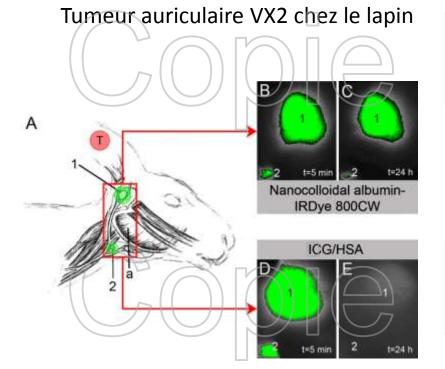
Autres fluorophores

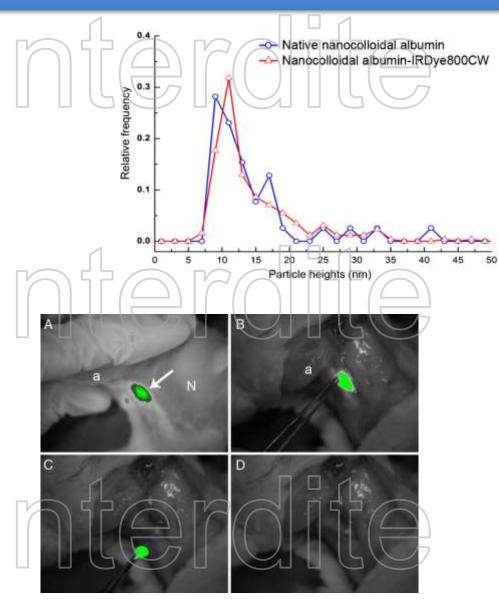
	ICG	Cy5.5	Cy7	Irdye800 CV	V ProSense 750
Excitation wavelength pbs nm	779	675	794	775	750
Emission wavelength pbs nm	806	695	775	796	780
High quantum yield	+/-	+	+	+/-	
Aqueous solubility	+/-	+	+	+	+
Low photo-bleaching	+	+	+	+	+
Low non-specific binding		+	+	+	++
High signal-to-background ratio	+/-	+	+	++	++
Rapid clearance of free dyes	+	+	+	+	+/-
Low toxicity	++	++	++	+	+
Human studies	+		2(1-3)	_	F I A

ICG seul fluorophore approuvé par la FDA

- Ne peut être lié directement par liaison covalente sur l'albumine
- Version modifié ICG N-hydroxysuccimide [NHS-ester] mais diminition importante du signal de fluorescence

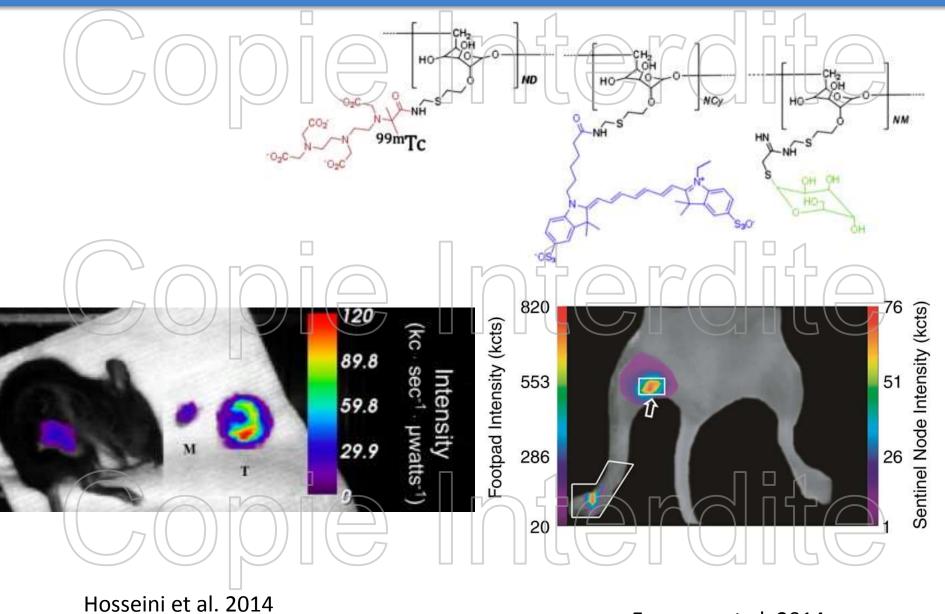
IRDye800 CW


- peu d'autofluorescence des tissus et sang vers 800 nm (comme ICG)
- Version modifié NHS ou maléimide pour liaison à des biomolécules
- pas de perte de fluorescence
- Production « GMP »



Fluorophore de prochaine génération?

Nanocolloïdes-IRDye 800CW


- IRDye 800CW lié aux résidus lysine
- 14 résidus par colloïdes
- 50% de rendement (<2% libre)
- Pas de modification de taille

Heuvelin et al. 2012

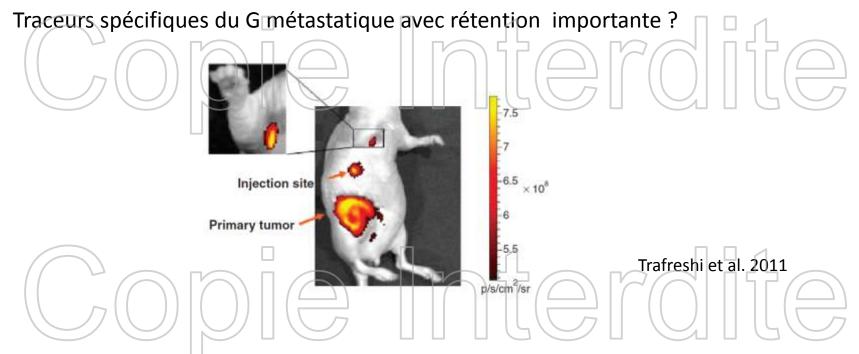
99mTc-Timanocept-Cy7

Emerson et al. 2014

Gamma caméra portable

Fig. 2 Patient with SLN (arrows) in the left axilla: a preoperative scintigram; b preincision FhSPECT image; c postoperative FhSPECT image with no remaining activity (stars injection site)

Freehand SPECT (Bluemel et al. 2013)



Perspectives

Généralisation de l'utilisation des Gamma Caméra portable en per-opératoire

Caméra portable hybride SPECT et optique ?

Traceurs multimodaux

Collaboration étroite entre le médecin nucléaire et les chirurgiens